Answer :
Let ax + by + c = 0 be the variable line. It is given that the algebraic sum of the distances
of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero.
∴
⇒ 3a + 3b + 3c = 0
⇒ a + b + c = 0
Substituting c = – a – b in ax + by + c = 0, we get:
ax + by – a – b = 0
⇒ a(x – 1) + b(y – 1) = 0
⇒
This line is of the form L1 + λL2 = 0, which passes through the intersection of L1 = 0 and L2 = 0, i.e. x – 1 = 0 and y – 1 = 0.
⇒ x = 1, y = 1
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Expertsview all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
RELATED QUESTIONS :
Find the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RS Aggarwal - MathematicsFind the equation
RD Sharma - MathematicsFind the coordina
RD Sharma - Mathematics