# Show that the straight lines given by (2 + k)x + (1 + k)y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.

Given:

lines given by (2 + k)x + (1 + k)y = 5 + 7k

To prove:

The straight lines given by (2 + k)x + (1 + k)y = 5 + 7k for different values of k pass through a fixed point

Explanation:

The given straight line (2 + k)x + (1 + k)y = 5 + 7k can be written in the following way:

2x + y 5 + k (x + y 7) = 0

This line is of the form L1 + kL2 = 0, which passes through the intersection of the lines
L1 = 0 and L2 = 0, i.e. 2x + y
5 = 0 and x + y 7 = 0.

Solving 2x + y 5 = 0 and x + y 7 = 0, we get ( 2, 9), which is the fixed point.

Hence proved.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Various Forms of Equations of line45 mins
Slope, inclination and angle between two lines48 mins
Interactive Quiz on Equations of line23 mins
Parametric Equations of Straight line48 mins
Straight line | Analyse your learning through quiz56 mins
General Equation of a line43 mins
Motion in a Straight Line - 0665 mins
Motion in a Straight Line - 0556 mins
Motion in a Straight Line - 0372 mins
Motion in a Straight Line - 1169 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses