Answer :
Given:
p1x + q1y = 1
p2x + q2y = 1
p3x + q3y = 1
To prove:
The points (p1, q1), (p2, q2) and (p3, q3) are collinear.
Concept Used:
If three lines are concurrent then determinant of equation is zero.
Explanation:
The given lines can be written as follows:
p1 x + q1 y – 1 = 0 … (1)
p2 x + q2 y – 1 = 0 … (2)
p3 x + q3 y – 1 = 0 … (3)
It is given that the three lines are concurrent.
∴
⇒
⇒
Hence proved, This is the condition for the collinearity of the three points, (p1, q1), (p2, q2) and (p3, q3).
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation

