Q. 54.8( 4 Votes )
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x – axis whose sine is
.
Answer :
A line which is passing through (1,2)
To Find: The equation of a straight line.
Formula used: The equation of line is [y – y1 = m(x – x1)]
Explanation: Here,
We know,
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Perpendicular)2
(5)2 = (Base)2 + (3)2
(Base) =
(Base)2 =
Base = 4
Hence,
SO, The slope of the line, m = tan θ
m =
The line passing through (x1,y1) = (1,2)
The required equation of line is y – y1 = m(x – x1)
y – 2 = (x – 1)
4y – 8 = 3x – 3
3x – 4y + 5 = 0
Hence, The equation of line is 3x – 4y + 5 = 0
Rate this question :






















The equation of the straight line which passes through the point (-4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
RD Sharma - MathematicsFind the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1.
RD Sharma - MathematicsFind the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.
RD Sharma - MathematicsFind the equation of the straight line which passes through the point P(2, 6) and cuts the Coordinates axes at the point A and B respectively so that .
Find the equation of the line passing through the point ( – 3, 5) and perpendicular to the line joining (2, 5) and ( – 3, 6).
RD Sharma - MathematicsFind the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9
RD Sharma - MathematicsFind the equation of the right bisector of the line segment joining the points (3, 4) and ( – 1, 2).
RD Sharma - MathematicsFind the equations to the altitudes of the triangle whose angular points are A (2, – 2), B(1, 1), and C ( – 1, 0).
RD Sharma - Mathematics