Answer :

Let the price of one chair be 'x' and one table be 'y'.

Given,

Price of 3 chairs and 2 tables = 4500 Rs

⇒ 3x + 2y = 4500

Multiplying by 3 both side,

⇒ 9x + 6y = 13500

⇒ 6y = 13500 - 9x eq.[1]

Price of 5 chairs and 3 tables = 7000 Rs

⇒ 5x + 3y = 7000

Multiplying by eq.[2] both side,

⇒ 10x + 6y = 14000

⇒ 10x + 13500 - 9x = 14000 eq.[From 1]

⇒ x = 500

Putting this in eq.[1]

⇒ 6y = 13500 - 9(500)

⇒ 6y = 13500- 4500

⇒ 6y = 9000

⇒ y = 1500

Also, Price of 2 chairs and 2 tables = 2x + 2y

= 2(500) + 2(1500)

= 1000 + 3000 = 4000 Rs.

Rate this question :

In ΔABC, the measMHB - Math Part-I

In a competitive MHB - Math Part-I

The sum of ages oMHB - Math Part-I

Divide a rope of MHB - Math Part-I

Solve the followiMHB - Math Part-I

The sum of the diMHB - Math Part-I

In an envelope thMHB - Math Part-I

Choose the correcMHB - Math Part-I

The denominator oMHB - Math Part-I

Sanjay gets fixedMHB - Math Part-I