Answer :
(i)
x + y = 4 eq.[1]
2x - 5y = 1 eq.[2]
We can write eq.[1] as,
x = 4 - y eq.[3]
Substituting eq.[3] in eq.[2],
⇒ 2(4 - y) - 5y = 1
⇒ 8 - 2y - 5y = 1
⇒ -7y = -7
⇒ y = 1
Substituting 'y' in eq.[3]
⇒ x = 4 - 1
⇒ x = 3
Hence, solution is x = 3 and y = 1.
(ii)
2x + y = 5 eq.[1]
3x - y = 5 eq.[2]
We can write eq.[1] as,
y = 5 - 2x eq.[3]
Substituting eq.[3] in eq.[2],
⇒ 3x - (5 - 2x) = 5
⇒ 3x - 5 + 2x = 5
⇒ 5x = 10
⇒ x = 2
Substituting 'x' in eq.[3]
⇒ y = 5 - 2(2)
⇒ y = 1
Hence, solution is x = 2 and y = 1.
(iii)
3x - 5y = 16 eq.[1]
x - 3y = 8 eq.[2]
We can write eq.[2] as,
x = 8 + 3y eq.[3]
Substituting eq.[3] in eq.[1],
⇒ 3(8 + 3y) - 5y = 16
⇒ 24 + 9y - 5y = 16
⇒ 4y = -8
⇒ y = -2
Substituting 'y' in eq.[3]
⇒ x = 8 + 3(-2)
⇒ x = 8 - 6 = 2
Hence, solution is x = 2 and y = -2
(iv)
2y - x = 0 eq.[1]
10x + 15y = 105 eq.[2]
We can write eq.[1] as,
x = 2y eq.[3]
Substituting eq.[3] in eq.[2],
⇒ 10(2y) + 15y = 105
⇒ 20y + 15y = 105
⇒ 35y = 105
⇒ y = 3
Substituting 'y' in eq.[3]
⇒ x = 2(3)
⇒ x = 6
Hence, solution is x = 6 and y = 3.
(v)
2x + 3y + 4 = 0 eq.[1]
x - 5y = 11 eq.[2]
We can write eq.[2] as,
x = 11 + 5y eq.[3]
Substituting eq.[3] in eq.[1],
⇒ 2(11 + 5y) + 3y + 4 = 0
⇒ 22 + 10y + 3y + 4 = 0
⇒ 13y + 26 = 0
⇒ 13y = -26
⇒ y = -2
Substituting 'y' in eq.[3]
⇒ x = 11 + 5(-2)
⇒ x = 11 - 10 = 1
Hence, solution is x = 1 and y = -2.
(vi)
2x - 7y = 7 eq.[1]
3x + y = 22 eq.[2]
We can write eq.[2] as,
y = 22 - 3x eq.[3]
Substituting eq.[3] in eq.[1],
⇒ 2x - 7(22- 3x) = 7
⇒ 2x - 154 + 21x = 7
⇒ 23x = 161
⇒ x = 7
Substituting 'x' in eq.[3]
⇒ y = 22 - 3(7)
⇒ y = 22 - 21 = 1
Hence, solution is x = 7 and y = 1.
Rate this question :






















The sum of ages o
MHB - Math Part-IDivide a rope of
MHB - Math Part-IIn an envelope th
MHB - Math Part-IThe sum of the di
MHB - Math Part-IIn ΔABC, the meas
MHB - Math Part-IIn a competitive
MHB - Math Part-IChoose the correc
MHB - Math Part-IThe price of 3 ch
MHB - Math Part-IThe denominator o
MHB - Math Part-IThe total number
MHB - Math Part-I