Answer :

Now, we know de Broglie wavelength of Particle can be given by relation


Where, ๐œ† is de Broglie wavelength of a Particle 
m, mass of the body 
v, velocity of the body 
h, planck constant = 6.63 × 10-34 Js

(a)
 given,

mass of bullet, m = 0.040 kg

the speed of bullet is, v = 1.0 km/s = 1000 m/s

putting the valued of m, v, h in the relation

we get the de Broglie wavelength of Bullet as


So, de Broglie wavelength of Bullet is 1.65 × 10-35 m


(b)
 given,
mass of Ball 
m = 0.060 kg

the speed of Ball is, v = 1.0 m/s

putting the valued of m , v, h in the relation

we get the de Broglie wavelength of Ball as


So, de Broglie wavelength of Ball is 1.1 × 10-32 m

(c)
 given,

mass of dust particle 
m = 1 × 10-9 kg

the speed of dust particle is

v = 2.2 m/s

putting the valued of m, v, h

we get the de Broglie wavelength of Ball as

So, de Broglie wavelength of Dust Particle is 3.0 × 10-25 m

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Calculate the de-Physics - Board Papers

(a) Plot a graph Physics - Board Papers

Plot a graph showPhysics - Board Papers

Answer the followNCERT - Physics Part-II

An electron (massPhysics - Exemplar