Q. 47

Two identical steel cubes (masses 50g, side 1cm) collide head-on face to face with a speed of 10cm/s each. Find the maximum compression of each. Young’s modulus for steel = Y= 2 × 1011 N/m2.

Answer :

From Hooke’s law, ,


Where F = Force,


A= Area of cross section


Y= young’s modulus


L=initial length of the cube


Δ L=change in length


Kinetic energy of both boxes K.E.


Now, the kinetic energy gets converted to potential energy due to compression and,


P.E.



Now, P.E = K.E




Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Inelastic collisions in 1 DInelastic collisions in 1 DInelastic collisions in 1 D44 mins
Check Your progress Part 2| Interactive Quiz: Work, Energy & PowerCheck Your progress Part 2| Interactive Quiz: Work, Energy & PowerCheck Your progress Part 2| Interactive Quiz: Work, Energy & Power44 mins
Work, Energy & Power (Lecture 6)Work, Energy & Power (Lecture 6)Work, Energy & Power (Lecture 6)41 mins
Work, Energy & Power (Lecture 4)Work, Energy & Power (Lecture 4)Work, Energy & Power (Lecture 4)50 mins
Complete Revision of Work , Power and Energy | Mastering important chaptersComplete Revision of Work , Power and Energy | Mastering important chaptersComplete Revision of Work , Power and Energy | Mastering important chapters46 mins
Work, Energy & Power (Lecture 5)Work, Energy & Power (Lecture 5)Work, Energy & Power (Lecture 5)54 mins
Interactive Quiz of Work Power energy | Check your progressInteractive Quiz of Work Power energy | Check your progressInteractive Quiz of Work Power energy | Check your progress53 mins
Conservation of Linear Momentum, Visualize the concept (Theory + Interactive Quiz)Conservation of Linear Momentum, Visualize the concept (Theory + Interactive Quiz)Conservation of Linear Momentum, Visualize the concept (Theory + Interactive Quiz)41 mins
Work, Energy & Power (Lecture 2)Work, Energy & Power (Lecture 2)Work, Energy & Power (Lecture 2)44 mins
Work, Energy & Power (Lecture 3)Work, Energy & Power (Lecture 3)Work, Energy & Power (Lecture 3)47 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :