Q. 174.1( 15 Votes )

The bob A of a pendulum released from 30o to the vertical hits another bob B of the same mass at rest on a table as shown in Fig. 6.15. How high does the bob A rise after the collision? Neglect the size of the bobs and assume the collision to be elastic.


Answer :

The bob A will not rise after the collision. It will stay at rest because the collision is elastic. In an elastic collision, the velocities are interchanged. Hence, the bob A will come to rest and the bob B will move with the velocity of bob A after collision.


NOTE: Elastic collisions are collisions in which both momentum and kinetic energy are conserved. The total system kinetic energy before the collision equals the total system kinetic energy after the collision. If total kinetic energy is not conserved, then the collision is referred to as an inelastic collision.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Inelastic collisions in 1 DInelastic collisions in 1 DInelastic collisions in 1 D44 mins
Check Your progress Part 2| Interactive Quiz: Work, Energy & PowerCheck Your progress Part 2| Interactive Quiz: Work, Energy & PowerCheck Your progress Part 2| Interactive Quiz: Work, Energy & Power44 mins
Work, Energy & Power (Lecture 6)Work, Energy & Power (Lecture 6)Work, Energy & Power (Lecture 6)41 mins
Work, Energy & Power (Lecture 4)Work, Energy & Power (Lecture 4)Work, Energy & Power (Lecture 4)50 mins
Complete Revision of Work , Power and Energy | Mastering important chaptersComplete Revision of Work , Power and Energy | Mastering important chaptersComplete Revision of Work , Power and Energy | Mastering important chapters46 mins
Work, Energy & Power (Lecture 5)Work, Energy & Power (Lecture 5)Work, Energy & Power (Lecture 5)54 mins
Interactive Quiz of Work Power energy | Check your progressInteractive Quiz of Work Power energy | Check your progressInteractive Quiz of Work Power energy | Check your progress53 mins
Conservation of Linear Momentum, Visualize the concept (Theory + Interactive Quiz)Conservation of Linear Momentum, Visualize the concept (Theory + Interactive Quiz)Conservation of Linear Momentum, Visualize the concept (Theory + Interactive Quiz)41 mins
Work, Energy & Power (Lecture 2)Work, Energy & Power (Lecture 2)Work, Energy & Power (Lecture 2)44 mins
Work, Energy & Power (Lecture 3)Work, Energy & Power (Lecture 3)Work, Energy & Power (Lecture 3)47 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :