Answer :

Given: X = set of all quadrilaterals.

Y = set of all rhombuses.

S = set of all squares.

T = set of all parallelograms.

V = set of all rectangles.

S ⊆ X, because all squares are quadrilaterals.

V ⊆ X, because all rectangles are quadrilaterals.

T ⊆ X, because all parallelograms are quadrilaterals.

S ⊆ Y, because all squares are rhombus.

S ⊆ V, because all squares are rectangles.

S ⊆ T, because all squares are parallelograms.

V ⊆ T, because all rectangles are parallelograms.

Y ⊆ T, because all rhombus are parallelograms.

Rate this question :

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I

<span lang="EN-USMHB - Math Part-I