Answer :
Given: In the picture, A, B, C, D are points on a circle centred at O. The line AC and BD are extended to meet at P. The line AD and BC intersect at Q
To Prove: The angle which the small arc AB makes at O is the sum of the angles it makes at P and Q i.e.
∠AOB = ∠APB + ∠AQB
We know that,
The angle made by an arc of circle on the alternate arc is half the angle made at center.
Therefore,
…[1] and
…[2]
Also, By linear pair
∠ACB + ∠PCB = 180°
∠ACB = 180° – ∠PCB …[3]
And
∠ADB + ∠ADP = 180°
∠ADB = 180° – ∠ADP …[4]
Also, By angle sum property of quadrilateral of CQDP
∠CQD + ∠QCP + ∠CPD + ∠PDQ = 360°
⇒ ∠AQB + ∠PCB + ∠APB + ∠ADP = 360°
⇒ ∠PCB + ∠ADP = 360°– (∠AQB + ∠APB) …[5]
[Here, ∠CQD = ∠AQB, vertically opposite angles]
Adding [1] and [2]
⇒ ∠ACB + ∠ADB = ∠AOB
⇒ 180° – ∠PCB + 180° – ∠ADP = ∠AOB [Using [3] and [4]]
⇒ 360° – (∠PCB + ∠ADP) = ∠AOB
⇒ 360° – (360° – (∠AQB + ∠APB)) = ∠AOB
⇒ ∠AOB = ∠AQB + ∠APB
Hence Proved.
Rate this question :


A rod bent into a
Kerala Board Mathematics Part-1In the picture, A
Kerala Board Mathematics Part-1In all the pictur
Kerala Board Mathematics Part-1Draw a triangle o
Kerala Board Mathematics Part-1In the picture, O
Kerala Board Mathematics Part-1In each problem b
Kerala Board Mathematics Part-1The numbers 1, 4,
Kerala Board Mathematics Part-1In the picture, A
Kerala Board Mathematics Part-1