Q. 85.0( 3 Votes )

In the following, determine the value(s) of constant(s) involved in the definition so that the given function is continuous:
(CBSE 2013)

Answer :

Basic Idea:


A real function f is said to be continuous at x = c, where c is any point in the domain of f if :


where h is a very small ‘+ve’ no.


i.e. left hand limit as x c (LHL) = right hand limit as x c (RHL) = value of function at x = c.


This is very precise, using our fundamental idea of limit from class 11 we can summarise it as, A function is continuous at x = c if :



Here we have,


……………..equation 1


Function is defined for all real numbers and we need to find the value of p so that it is continuous everywhere in its domain (domain = set of numbers for which f is defined)


To find the value of constants always try to check continuity at the values of x for which f(x) is changing its expression.


As most of the time discontinuities are here only, if we make the function continuous here, it will automatically become continuous everywhere


From equation 1 ,it is clear that f(x) is changing its expression at x = 0


Given,


f(x) is continuous everywhere



[using basic ideas of limits and continuity]


[considering LHL as LHL will give expression inclusive of p]


[using equation 1]







p =

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Super 10 Question: Check Your Knowledge of Maxima & Minima (Quiz)Super 10 Question: Check Your Knowledge of Maxima & Minima (Quiz)Super 10 Question: Check Your Knowledge of Maxima & Minima (Quiz)45 mins
Maxima & Minima in an intervalMaxima & Minima in an intervalMaxima & Minima in an interval60 mins
Questions Based on Maxima & MinimaQuestions Based on Maxima & MinimaQuestions Based on Maxima & Minima57 mins
Connection B/w Continuity & DifferentiabilityConnection B/w Continuity & DifferentiabilityConnection B/w Continuity & Differentiability59 mins
Questions based on Maxima & Minima in an intervalQuestions based on Maxima & Minima in an intervalQuestions based on Maxima & Minima in an interval59 mins
Check your Knowlege of Maxima & Minima ( Challenging Quiz)Check your Knowlege of Maxima & Minima ( Challenging Quiz)Check your Knowlege of Maxima & Minima ( Challenging Quiz)60 mins
Problems Based on L-Hospital Rule (Quiz)Problems Based on L-Hospital Rule (Quiz)Problems Based on L-Hospital Rule (Quiz)0 mins
When does a Maxima or Minima occur?When does a Maxima or Minima occur?When does a Maxima or Minima occur?48 mins
Interactive Quiz | Differentiability by using first principleInteractive Quiz | Differentiability by using first principleInteractive Quiz | Differentiability by using first principle59 mins
Interactive Quiz on LimitsInteractive Quiz on LimitsInteractive Quiz on Limits67 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses