Answer :
Let f(x) = cos x
Formula used:
f(x) is continuous at x = c where c is any real number
if L.H.L = R.H.L = f(c)
Take L.H.L
Put x = c – h
x → c ⇒ c – h → c ⇒ h → c – c ⇒ h → 0
{∵ cos (A – B) = cos A cos B + sin A sin B}
= cos c (1) + (0) sin c
= cos c………………(1)
Take R.H.L
Put x = c + h
x → c ⇒ c + h → c ⇒ h → c – c ⇒ h → 0
{∵ cos (A + B) = cos A cos B – sin A sin B}
= cos c (1) – (0) sin c
= cos c………………(2)
f(x) = cos x
⇒ f(c) = cos c………………(3)
From (1), (2) and (3):
L.H.L = R.H.L = f(c)
⇒ f(x) is continuous for any real number
Hence, cos x is continuous
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Find which of the
Mathematics - ExemplarDiscuss the conti
RD Sharma - Volume 1Find which of the
Mathematics - ExemplarFind which of the
Mathematics - ExemplarIf <i
Mathematics - Exemplar<img width=
Mathematics - ExemplarFind the value of
Mathematics - ExemplarDiscuss the conti
RD Sharma - Volume 1Discuss the conti
RD Sharma - Volume 1Find the value of
Mathematics - Exemplar