Answer :
*: a*b=ab+1
(i) Given operation is a*b=ab+1
If any operation is a binary operation, it must follow closure property.
Let a∈R and b∈R
Then ab∈R
Also ab+1 ∈R
So, a*b ∈R
So * satisfies the closure property.
Since * is defined for all a, b ∈ R, therefore * is a binary operation.
(ii) For * to be associative, (a*b) *c=a*(b*c)
(a*b) *c=(ab+1) *c
= (ab +1)c + 1=abc+c + 1
a*(b*c) =a*(bc+1)
= a(bc+1) + 1
=abc+a+1
Since (a*b) *c≠ a*(b*c), therefore * is not associative.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
| Let * be a bina
Mathematics - Board PapersFind the id
Mathematics - Board PapersLet f : A →
Mathematics - ExemplarShow that the bin
Mathematics - Board PapersDetermine whether
RD Sharma - Volume 1Fill in the
Mathematics - Exemplar