Q. 54.2( 28 Votes )

State with reason

Answer :

(i) False.

Explanation: Every Parallelogram cannot be the rhombus as the diagonals of a rhombus bisects each other at 90° but this is not the same with every parallelogram. Hence the statement if false.


(ii) False.


Explanation: In a rhombus all the sides are congruent but in a rectangle opposite sides are equal and parallel. Hence the given statement is false.


(iii) True.


Explanation: The statement is true as in a rectangle opposite angles and adjacent angles all are 90°. And for any quadrilateral to be parallelogram the opposites angles should be congruent.


(iv) True.


Explanation: Every square is a rectangle as all the angles of the square at 90° , diagonal bisects each other and are congruent , pair of opposite sides are equal and parallel . Hence every square is a rectangle is true statement.


(v) True.


Explanation: The statement is true as all the test of properties of a rhombus are meet by square that is diagonals are perpendicular bisects each other , opposite sides are parallel to each other and the diagonals bisects the angles.


(vi) False.


Explanation:


Every parallelogram is a rectangle is not true as rectangle has each angle of 90° measure but same is not the case with every parallelogram.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Quiz | Properties of ParallelogramQuiz | Properties of ParallelogramQuiz | Properties of Parallelogram31 mins
Extras on QuadrilateralsExtras on QuadrilateralsExtras on Quadrilaterals40 mins
Critical Thinking Problems on QuadrilateralsCritical Thinking Problems on QuadrilateralsCritical Thinking Problems on Quadrilaterals44 mins
Smart Revision | QuadrilateralsSmart Revision | QuadrilateralsSmart Revision | Quadrilaterals43 mins
Quiz | Basics of QuadrilateralsQuiz | Basics of QuadrilateralsQuiz | Basics of Quadrilaterals36 mins
RD Sharma |  Extra Qs. of Cyclic QuadrilateralsRD Sharma |  Extra Qs. of Cyclic QuadrilateralsRD Sharma | Extra Qs. of Cyclic Quadrilaterals31 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

In <span lang="ENMHB - Math Part-II

Diagonals of a sqMHB - Math Part-II

In a parallelograMHB - Math Part-II

In the adjacent FMHB - Math Part-II

In figure 5.23, GMHB - Math Part-II

In a rhombus PQRSMHB - Math Part-II

In figure 5.13 <sMHB - Math Part-II

In figure 5.25, iMHB - Math Part-II

Choose the correcMHB - Math Part-II

Choose the correcMHB - Math Part-II