Answer :

We draw a perpendicular on chord AB from O.

We know that a perpendicular drawn from the center of a circle on its chord bisects

the chord.

Therefore,

AM = MB …….(1)

OM is also perpendicular to chord PQ of smaller circle.

Therefore,

PM = MQ ………….(2)

Subtracting (2) from (1)

AM-PM = MB-MQ

⇒ AP = BQ

Hence Proved.

Rate this question :

How useful is this solution?

We strive to provide quality solutions. Please rate us to serve you better.

Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Expertsview all courses

Dedicated counsellor for each student

24X7 Doubt Resolution

Daily Report Card

Detailed Performance Evaluation

RELATED QUESTIONS :

Choose correct alMHB - Math Part-II

Radius of a circlMHB - Math Part-II

Choose correct alMHB - Math Part-II

Choose correct alMHB - Math Part-II

Choose correct alMHB - Math Part-II

Choose correct alMHB - Math Part-II

Prove that, if a MHB - Math Part-II

Distance of chordMHB - Math Part-II

Diameter of a cirMHB - Math Part-II

Radius of a circlMHB - Math Part-II