Q. 4 H4.0( 16 Votes )
Let us solve the
Answer :
Rewriting the above equation as.
x + y = 5xy (i)
x - y = 9xy (ii)
In this problem, we will eliminate ‘y’ from both the equations.
Adding both the equations
2x = 14xy (cancelling x from both the sides)
⇒
Putting the value of y in equation(i)
x = 5xy - y or x = - 1/2
Hence the solution of the linear equation is x = and y = -1/2
Note: - Since we have cancelled x as it is common from both the sides, we have neglected a solution that is x = 0, similarly other solution as y = 0.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Problems on Linear Equations41 mins
Champ Quiz | Do you Know about Linear Equations ?35 mins
Master Linear Equations40 mins
Quiz | Imp. Qs. on Linear Equations44 mins
Quiz | Solve Problems on Linear Equations37 mins
NCERT | Linear Equations41 mins
Goprep Genius Quiz on Linear Equations34 mins
Equations of Motion41 mins
Smart Revision | Linear Equations in Two Variables34 mins
Bonus Questions on Linear Equations in Two Variables48 mins




















Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Let us solve the
West Bengal MathematicsLet us solve the
West Bengal MathematicsLet us solve the
West Bengal MathematicsLet us solve the
West Bengal MathematicsBy comparing the
West Bengal MathematicsLet us solve the
West Bengal MathematicsLet us solve the
West Bengal MathematicsLet us solve the
West Bengal MathematicsLet us solve the
West Bengal MathematicsLet us solve the
West Bengal Mathematics