Answer :
Let x be the measure of inner angle and 2x be the measure of outer angle.
Assume that the regular polygon has n sides (or angles)
Sum of the interior angles = (n – 2) × 180°
n × x = (n – 2) × 180°
⇒ nx = (n – 2) × 180° … (1)
Sum of the exterior angle = 360°
⇒ n × 2x = 360°
⇒ 2nx = 360°
⇒
Substitute this value for x in equation (1)
⇒
⇒ 180° = 180°n – 360°
⇒ 180° = 180°n – 360°
⇒ 180°n = 180° + 360°
⇒ 180°n = 540°
⇒
⇒ n = 3
Sum of the angles of n-sided polygon = (n – 2) × 180°
⇒ S = (3 – 2) × 180°
⇒ S = 1 × 180°
⇒ S = 180°
Measure of each interior angle
⇒ x°
i. Measure of each interior angle is 60°
ii. Number of sides of this polygon is 3.
Rate this question :












<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I<span lang="EN-US
Kerala Board Mathematics Part I