Q. 374.3( 9 Votes )

Find the value (s

Answer :

Let A ( 3k − 1, k − 2 ) , B ( k, k − 7 ) and C ( k − 1, −k − 2 ) be the given points.
For points to be collinear area of triangle formed by the vertices must be zero.

Area of the triangle having vertices ( x1,y1 ) , ( x2,y2 ) and ( x3,y3 )  = |x1 ( y2 - y3 ) + x2 ( y3 - y1 ) + x3 ( y1 - y2 ) |

area of ∆ABC = 0

⇒ ( 3k−1 ) [ ( k−7 ) − ( −k−2 ) ] + k [ ( −k−2 ) − ( k−2 ) ] + ( k−1 ) [ ( k−2 ) − ( k−7 ) ] =0
⇒ ( 3k−1 ) [ k−7 + k + 2  ] + k [ −k−2 − k+ 2  ] + ( k−1 ) [ k−2 − k + 7  ] =0

⇒ ( 3k−1 ) ( 2k−5 ) + k (−2k ) + 5 ( k −1 ) =0
⇒ 6k2 - 15k -2k + 5 - 2k2 + 5k - 5 = 0

⇒ 6k2−17k + 5−2k2 + 5k−5=0

⇒ 4k2−12k=0

⇒ 4k ( k−3 ) =0

⇒ k=0 or k−3=0

⇒ k=0 or k=3


Hence, the value of k is 0 or 3.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Doubt SessionDoubt SessionDoubt Session47 mins
Section FormulaSection FormulaSection Formula53 mins
Basics of Coordinate GeometryBasics of Coordinate GeometryBasics of Coordinate Geometry53 mins
Distance FormulaDistance FormulaDistance Formula52 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses