Answer :
Let Δ ABC be drawn to circumscribe a circle with centre O and radius 4 cm and circle touches the sides BC, CA and AB at D, E and F respectively.
Given CD = 6 cm and BD = 8 cm
∴ BF = BD = 8 cm and CE = CD = 6 cm
[Since length of two tangents drawn from an external point of circle are equal]
Now, let AF = AE = x cm
Then, AB = c = (x + 8) cm, BC = a = 14 cm, CA = b = (x + 6) cm
We know that 2s = a + b + c
⇒ 2s = (x + 8) + 14 + (x + 6)
⇒ 2s = 2x + 28
⇒ s = x + 14
⇒ s – a = (x + 14) – 14 = x
⇒ s – b = (x + 14) – (x + 6) = 8
⇒ s – c = (x + 14) – (x + 8) = 6
We know that area of triangle
⇒ Area of Δ ABC
⇒ Area (Δ ABC) = area (Δ OBC) + area (Δ OCA) + area (Δ OAB)
= 1/2 (BC) (OD) + 1/2 (CA) (OE) + 1/2 (AB) (OF)
= 1/2 (14) (4) + 1/2 (x + 6) (4) + 1/2 (x + 8) (4)
= 28 + 2x + 12 + 2x + 16
= 4x + 56
⇒
⇒
Squaring on both sides,
⇒ 48x (x + 14) = 16 (x + 14)2
⇒ 48x (x + 14) – 16 (x + 14)2 = 0
⇒ 16 (x + 14) [3x – (x + 14)] = 0
⇒ 16 (x + 14) (2x – 14) = 0
⇒ 16 (x + 14) = 0 or 2x – 14 = 0
⇒ x = -14 or 2x = 14
⇒ x = -14 or x = 7
But x cannot be negative so x ≠ -14
∴ x = 7 cm
∴ The sides AB = x + 8 = 7 + 8 = 15 cm
And AC = x + 6 = 7 + 6 = 13 cm
Rate this question :



