# If sin θ + cos θ

Given - sin θ + cos θ = √3

To Prove - tan θ + cot θ =1

Property - sin2 θ + cos2 θ = 1

sin θ + cos θ = √3

squaring on both sides,

(sin θ + cos θ)2 = 3

sin2 θ + cos2 θ + 2sin θ. cos θ = 3

1 + 2sin θ. cos θ = 3 ………( sin2 θ + cos2 θ = 1)

2sin θ. cos θ = 2

sin θ. cos θ = 1 ………(1)

Now,

L.H.S. = tan θ + cot θ

………from (1)

= 1

= R.H.S.

L.H.S. = R.H.S.

Hence Proved !!!

OR

Properties –

1. cos θ = sin (90 – θ)

2. tan θ = cot (90 – θ)

3. sin2 θ + cos2 θ = 1

4. tan θ. cot θ = 1

………by properties given above

………by properties given above

= 1 + 2

= 3

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :

Choose the correcRS Aggarwal - Mathematics

If A, B and C areRS Aggarwal - Mathematics