Answer :
To find mean, we will solve by direct method:

We have got
Σfi = 50 & Σfixi = 7490
∵ mean is given by
⇒
⇒
To find median,
Assume Σfi = N = Sum of frequencies,
h = length of median class,
l = lower boundary of the median class,
f = frequency of median class
and Cf = cumulative frequency
Lets form a table.

So, N = 50
⇒ N/2 = 50/2 = 25
The cumulative frequency just greater than (N/2 = ) 25 is 42, so the corresponding median class is 150 - 160 and accordingly we get Cf = 22(cumulative frequency before the median class).
Now, since median class is 150 - 160.
∴ l = 150, h = 10, f = 20, N/2 = 25 and Cf = 22
Median is given by,
⇒
= 150 + 1.5
= 151.5
And we know that,
Mode = 3(Median) – 2(Mean)
= 3(151.5) – 2(149.8)
= 454.5 – 299.6
= 154.9
Hence, mean is 149.8, median is 151.5 and mode is 154.9.
Rate this question :

