Answer :
Let A is a skew – symmetric matrix, then
AT = - A …(i)
Now, we have to check An is symmetric or skew – symmetric
(An)T = (AT)n [for all n Є N]
⇒ (An)T = (- A)n [from (i)]
⇒ (An)T = (-1)n (A)n
Given that n is odd natural number, then
(An)T = - An
[∵ (-1)3 = - 1, (-1)5 = - 1,… (-1)n = - 1]
So, An is a skew - symmetric matrix
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
<span lang="EN-US
Mathematics - Exemplar<span lang="EN-US
Mathematics - ExemplarFill in the blank
Mathematics - ExemplarFill in the blank
Mathematics - ExemplarFill in the blank
Mathematics - ExemplarIf A, B are squar
Mathematics - ExemplarFill in the blank
Mathematics - ExemplarFill in the blank
Mathematics - ExemplarExpress the follo
Mathematics - Board PapersFill in the blank
Mathematics - Exemplar