Answer :
|A| = 3(-2)-1(3) +2(-4)
= -6 -3 -8
= -17
∴ As, |A| is not equal to zero.
So, A-1 exists.
Element of a co-factor matrix is given by,
Cij = (-1)i+j(Mij)
Where Mij is minor of Aij.
Mij is equal to the determinant of the matrix obtained after removing ith row and jth column.
So, C11 = (-1)1+1
⇒ C11 = -2 + 0
⇒ C11 = -2
C12 = (-1)1+2
⇒ C12 = -1(-3 + 6)
⇒ C12 = -3
C13 = (-1)1+3
⇒ C13 = 0 – 4
⇒ C13 = -4
C21 = (-1)2+1
⇒ C21 = (-1)(-1 + 0)
⇒ C21 = 1
C22 = (-1)2+2
⇒ C22 = -3 – 4
⇒ C22 = -7
C23 = (-1)2+3
⇒ C23 = (-1)(0 – (-2))
⇒ C23 = (-1)(2)
⇒ C23 = 2
C31 = (-1)3+1
⇒ C31 = -3 – 4
⇒ C31 = -7
C32 = (-1)3+2
⇒ C32 = (-1)(-9 – 6)
⇒ C32 = (-1)(-15)
⇒ C32 = 15
C33 = (-1)3+3
⇒ C33 = 6 – 3
⇒ C33 = 3
So, co-factor matrix of A =
Now for given system of equations.
Clearly, (At)X = B
⇒ X = (At)-1 B
As, (At)-1 = (A-1)t
∴ X = (A-1)t B
Therefore, x = 2, y = 1, and z = –4
OR
Let,
As A = IA
So,
R1→R1+R3
R1→ (-1) R1
R2→ R2 + 5R1
R3→ R3 + 3R1
Interchanging R2 and R3
R2→ (-1) R2
R1→ R1 + R2
R3→ R3 + 2R2
R1→ R1 - 9R3
R2→ R2 - 152R3
Therefore,
Rate this question :


<span lang="EN-US
Mathematics - Exemplar<span lang="EN-US
Mathematics - ExemplarUsing matrices so
Mathematics - Board PapersOn her birthday S
Mathematics - Board PapersUsing matrices so
Mathematics - Board Papers<span lang="EN-US
RS Aggarwal - Mathematics<span lang="EN-US
RS Aggarwal - MathematicsUsing elementary
RS Aggarwal - MathematicsUsing elementary
RS Aggarwal - Mathematics