Q. 223.7( 3 Votes )
Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of red cards.
Answer :
We know that in a deck of 52 cards there are 26 red cards and 26 black cards.
Let X be the random variable associated with this experiment of drawing of red cards simultaneously.
∴ X can take values 0 ,1 or 2.
P(X = 0) = Probability of getting 0 number of red card
This means both cards drawn are black.
∴ P(X=0) =
Probability of getting 1 red card and the other non – red = P (X = 1)
P(X = 1) =
P (X =2) = Probability of getting 2 red cards
P(X = 2) =
Probability distribution table for the above random experiment is –
Mean = ∑pixi
Mean = +
+
Mean = 1
Variance = ∑pixi2 - Mean2
Variance = +
+
- 12
∴ variance = 0.49
Mean = 1 & Variance = 0.49.
Rate this question :






















An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also, find mean and variance of the distribution.
Mathematics - Board PapersTwo cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards. Find the mean and variance of the number of red cards.
Mathematics - Board PapersLet and * be a binary operation on A defined by
Show that * is commutative and associative. Find the identity element for * on A. also find the inverse of every element
Which of the following distributions of probabilities of a random variable X are the probability distributions?
Which of the following distributions of probabilities of a random variable X are the probability distributions?
A random variable X has the following probability distribution: