Q. 21

# Prove that there

Given: Three non collinear points P, Q and R

Construction: Join PQ and QR.

Draw perpendicular bisectors AB of PQ and CD of QR. Let the perpendicular bisectors intersect at the point O.

Now join OP, OQ and OR.

A circle is obtained passing through the points P, Q and R.

Proof:

We know that,

Every point on the perpendicular bisector of a line segment is equidistant from its ends

points.

Thus, OP = OQ (Since, O lies on the perpendicular bisector of PQ)

and OQ = OR. (Since, O lies on the perpendicular bisector of QR)

So, OP = OQ = OR.

Let OP = OQ = OR = r.

Now, draw a circle C(O, r) with O as centre and r as radius.

Then, circle C(O, r) passes through the points P, Q and R.

Next, we prove this circle is the only circle passing through the points P, Q and R.

If possible, suppose there is a another circle C(O′, t) which passes through the points P, Q, R.

Then, O′ will lie on the perpendicular bisectors AB and CD.

But O was the intersection point of the perpendicular bisectors AB and CD.

So, O ′ must coincide with the point O. (Since, two lines cannot intersect at more than one point)

As, O′P = t and OP = r; and O ′ coincides with O, we get t = r .

Therefore, C(O, r) and C(O, t) are congruent.

Thus, there is one and only one circle passing through three the given non – collinear points.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Arc of Circle And Related IMP Qs40 mins
IMP Qs Related with Circles For Boards44 mins
Chords Of Circles42 mins
IMP Theorems And Their Application43 mins
Circles- All kinds of Questions36 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :

Prove that there RS Aggarwal & V Aggarwal - Mathematics

Number of circlesRD Sharma - Mathematics

In the given figuRS Aggarwal & V Aggarwal - Mathematics

In the given figuRS Aggarwal & V Aggarwal - Mathematics

The question consRS Aggarwal & V Aggarwal - Mathematics

In the given figuRS Aggarwal & V Aggarwal - Mathematics

In the given figuRS Aggarwal & V Aggarwal - Mathematics

In the given figuRS Aggarwal & V Aggarwal - Mathematics

In the give figurRS Aggarwal & V Aggarwal - Mathematics

Prove that an angRS Aggarwal & V Aggarwal - Mathematics