Answer :

Let us take an irrational number ‘k’ and a non-zero rational number ‘’ where (a,b≠ 0).

Assume that the product of an irrational number and non-zero rational number is an rational number.

Therefore, let

where c/d is another rational number.

⇒

We can say that (bc) and (ad) are also integers with (ad ≠0).

So, bc/ad is a fraction with integer values in the numerator and denominator (denominator not zero) making it a rational number.

This is a contradiction to the fact that ‘k’ as an irrational number.

So, the assumption is wrong.

Therefore, the product of any irrational number and non-zero rational number is an irrational number.

Rate this question :

<span lang="EN-USKerala Board Mathematics Part-2

<span lang="EN-USKerala Board Mathematics Part-2