Answer :
i. (a + b)(a – b)(a2 + ab + b2)(a2 – ab + b2)
= (a + b)(a2 – ab + b2)(a – b)(a2 + ab + b2)
Using x3 – y3 = (x – y)(x2 + xy + y2)
x3 + y3 = (x + y)(x2 – xy + y2)
= (a3 + b3)(a3 – b3)
Now, using (a + b)(a – b) = a2 – b2
= a6 – b6
ii. (a – 2b)(a2 + 2ab + 4b2)(a3 + 8b3)
= (a – 2b)(a2 + a(2b) + (2b)2)(a3 + (2b)3)
Using x3 – y3 = (x – y)(x2 + xy + y2)
x3 + y3 = (x + y)(x2 – xy + y2)
= (a3 – (2b)3)(a3 + (2b)3)
Now, using (a + b)(a – b) = a2 – b2
= a6 – (2b)6
= a6 – 64b6
iii. (4a2 – 9)(4a2 – 6a + 9)(4a2 + 6a + 9)
= [(2a)2 – 32](4a2 – 6a + 9)(4a2 + 6a + 9)
Using x2 – y2 = (x – y)(x + y)
= (2a – 3)(2a + 3)(4a2 – 6a + 9)(4a2 + 6a + 9)
= (2a – 3)(4a2 + 6a + 9)(2a + 3)(4a2 – 6a + 9)
Using x3 – y3 = (x – y)(x2 + xy + y2)
x3 + y3 = (x + y)(x2 – xy + y2)
= [(2a)3 – 33][(2a)3 + 33]
= (2a)6 - 36
= 64a6 – 729
iv. (x – y)(x2 + xy + y2) + (y – z)(y2 + yz + z2) + (z – x)(z2 + zx + x2)
Using a3 – b3 = (a – b)(a2 + ab + b2)
= x3 – y3 + y3 – z3 + z3 – x3
= 0
v. (x + 1)(x2 - x + 1) + (2x – 1)(4x2 + 2x + 1) – (x – 1)(x2 + x + 1)
= (x + 1)(x2 - x + 1) + (2x – 1)((2x)2 + 2x + 1) – (x – 1)(x2 + x + 1)
Using x3 – y3 = (x – y)(x2 + xy + y2)
x3 + y3 = (x + y)(x2 – xy + y2)
= x3 + 1 + (2x)3 – 1 - (x3 – 1)
= x3 + 1 + 8x3 – 1 – x3 + 1
= 8x3 + 1
Rate this question :


















Let us write in the blank box:
West Bengal - Mathematics
Let us simplify using formula:
i.
iii.
iv.
v.
West Bengal - Mathematics
Let’s resolve into factors the following algebraic expressions:
i.
ii.
iii.
iv.
v.
vi.
vii.
viii.
ix.
x.
xi.
xii.
xiii.
xiv.
xv.
xvi.
xvii.
West Bengal - Mathematics
Let’s find the value of by calculation if
Let’s find the value of by calculation if
or,
or,
or, [by transposition]
[With the help of the identity No. VI]
West Bengal - Mathematics
Let’s find the value of by calculation if