Q. 23.9( 34 Votes )

# Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.**[CBSE 2011]**

**[CBSE 2011]**

Answer :

It is given that A = {1, 2, 3}, B = {4, 5, 6, 7}

f: A → B is defined as f = {(1, 4), (2, 5), (3, 6)}

Therefore, f(1) = 4, f(2) = 5, f(3) = 6

We can see that the images of distinct elements of A under f are distinct.

Therefore, function f is one- one.

Rate this question :

Fill in the blanks in each of the

Let f :R → R be defined by. Then (f o f o f) (x) = _______

Mathematics - ExemplarLet f : [2, ∞) → R be the function defined by f (x) = x^{2}–4x+5, then the range of f is

Let f : N → R be the function defined byand g : Q → R be another function defined by g (x) = x + 2. Then (g o f)3/2 is

Mathematics - ExemplarFill in the blanks in each of the

Let f = {(1, 2), (3, 5), (4, 1) and g = {(2, 3), (5, 1), (1, 3)}. Then g o f = ______and f o g = ______.

Mathematics - ExemplarLet f :R → R be defined by

Then f (– 1) + f (2) + f (4) is

Mathematics - ExemplarLet f : [0, 1] → [0, 1] be defined by

Then (f o f) x is

Mathematics - Exemplar