Answer :

Let us name the different coordinate in the above question figure:

∠ CBI + ∠ CBA = 180° (linear pair of angles at a vertex)

⇒ 105° + ∠ CBA = 180°

⇒ ∠ CBA = 180° - 105°

⇒ ∠ CBA = 65°

∠ BAH + ∠ BAC = 180° (linear pair of angles at a vertex)

⇒ ∠ BAH + 35° = 180°

⇒ ∠ BAH = 180° - 35°

⇒ ∠ BAH = 145°

In Δ ABC,

∠ A + ∠ B + ∠ C = 180° (Sum of the angles of triangle is 180°)

⇒ 35° + 65° + ∠ C = 180°

⇒ 100° + ∠ C = 180°

⇒ ∠ C = 180° - 100°

⇒ ∠ C = 80°

∠ ACB + ∠ ACJ = 180° (linear pair of angles at a vertex)

⇒ 80° + ∠ ACJ = 180°

⇒ ∠ ACJ = 180° - 80°

⇒ ∠ ACJ = 140°

Rate this question :

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I

<span lang="EN-USKerala Board Mathematics Part I