Answer :
⇒
⇒
⇒
⇒ let 2x = t
⇒ dt = 2dx
⇒
⇒
The above equation of the form
⇒
⇒
⇒
OR
By Partial Fraction:
⇒
Cancelling the denominator
⇒
Putting x = - 2
⇒ ( - 2)2 + ( - 2) + 1 = A(( - 2)2 + 1) + 0
= 4 - 2 + 1 = 5A
⇒
Putting x = 0
We get
⇒
Putting x = 1
⇒
⇒
⇒ Hence our equation becomes
⇒
⇒
⇒
⇒ I1 =
=
I2⇒
Let t = x2 + 1
⇒
⇒ dt = 2xdx
Substituting,
⇒
⇒
⇒
I3
⇒
⇒
Hence,
⇒
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Evaluate th
Mathematics - ExemplarEvaluate the foll
RD Sharma - Volume 1Evaluate the foll
RD Sharma - Volume 1Evaluate the foll
RD Sharma - Volume 1Evaluate the foll
RD Sharma - Volume 1If <img wid
Mathematics - ExemplarEvaluate the foll
RD Sharma - Volume 1Find :
Evaluate the foll
RD Sharma - Volume 1Evaluate the foll
RD Sharma - Volume 1