Q. 175.0( 1 Vote )

The corner points of the feasible region determined by the following system of linear inequalities:

2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5) is

A. p = q B. p = 2q

C. p = 3q D. q = 3p

Answer :

Given the vertices of the feasible region are:


O (0,0)


A (5,0)


B (3,4)


C (0,5)


Also given the objective function is Z = px+qy


Now substituting O,A,B and C in Z



As per the condition on p and q so that the maximum of Z occurs at both (3, 4) and (0, 5)


Then we can equate Z values at B and C, this gives


3p + 4q = 5q


3p = 5q – 4q


3p = q


Therefore the answer is option D i.e. q = 3p.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Range of Quadratic/quadratic & linear/Linear functionsRange of Quadratic/quadratic & linear/Linear functionsRange of Quadratic/quadratic & linear/Linear functions45 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :