Q. 13

# If sin x + cos x = a, find the value of |sin x – cos x|

Given, sin x + cos x = a

To find the value of |sin x – cos x|

Consider square of |sin x – cos x|

|sin x – cos x|2 = |sin x|2 + |cos x|2 – 2|sin x| |cos x|

[using the formula (a + b)2= a2 + b2 +2 ab]

|sin x – cos x|2 = |sin x|2 + |cos x|2 – 2|sin x| |cos x|

= (sin2 x + cos2 x)–[(sin x + cos x)2 –sin2 x –cos2 x]

= (sin2 x + cos2 x)–[a2 – (sin2 x + cos2 x) ]

[using the formula sin2 x + cos2 x = 1]

= 1 – a2 + 1

= 2 – a2

|sin x – cos x|2 = 2 – a2

Taking square root on both sides. Hence Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos  Trigonometric Functions - 0152 mins  Conditional IdentitiesFREE Class  Trigonometric Functions - 0568 mins  Trigonometric Functions - 0658 mins  Trigonometric Functions - 0366 mins  Trigonometric Series45 mins  Trigonometric Functions - 0268 mins  Trigonometric Functions - 0466 mins  Interactive Quiz on trigonometric ratios & identities73 mins  Trigonometric Functions - 0865 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation view all courses 