Q. 114.3( 34 Votes )

# If X= {a, b, c, d} and Y = {f, b, d, g}, find:

(i) X – Y

(ii) Y – X

(iii) X ∩ Y

Answer :

**(i)** It is given in the question that,

X = {a, b, c, d}

And, Y = {f, b, d, g}

X - Y implies the elements which are in X but not in Y.

∴ X – Y = {a, b, c, d} - {f, b, d, g}

= {a, c}

**(ii)** It is given in the question that,

Y = {f, b, d, g}

And, X = {a, b, c, d}

Y - X implies the elements which are in Y but not in X.

∴ Y – X = {f, b, d, g} - {a, b, c, d}

= {f, g}

**(iii)** It is given in the question that,

X = {a, b, c, d}

And, Y = {f, b, d, g}

∴

= {b, d}

Rate this question :

Let A = {a, b, c, d}, B = {c, d, e} and C = {d, e, f, g}. Then verify each of the following identities:

(i) A × (B ∩ C) = (A × B) ∩ (A × C)

(ii) A × (B – C) = (A × B) – (A × C)

(iii) (A × B) ∩ (B × A) = (A ∩ B) × (A ∩ B)

RS Aggarwal - Mathematics

If A and B be two sets such that n(A) = 3, n(B) = 4 and n(A ∩ B) = 2 then find.

(i) n(A × B)

(ii) n(B × A)

(iii) n(A × B) ∩ (B × A)

RS Aggarwal - Mathematics

(i) If A ⊆ B, prove that A × C ⊆ B × C for any set C.

(ii) If A ⊆ B and C ⊆ D then prove that A × C ⊆ B × D.

RS Aggarwal - Mathematics

Using properties of sets prove the statements given

For all sets A and B, (A ∪ B) – B = A – B

Mathematics - ExemplarIf A and B are two sets such that n(A) = 23, n(b) = 37 and n(A – B) = 8 then find n(A ∪ B).

Hint n(A) = n(A – B) + n(A ∩ B) n(A ∩ B) = (23 – 8) = 15.

RS Aggarwal - Mathematics

If A and B are two sets such than n(A) = 54, n(B) = 39 and n(B – A) = 13 then find n(A ∪ B).

Hint n(B) = n(B – A) + n(A ∩ B) ⇒ n(A ∩ B) = (39 – 13) = 26.

RS Aggarwal - Mathematics

If n(A) = 3 and n(B) = 5, find:

(i) The maximum number of elements in A ∪ B,

(ii) The minimum number of elements in A ∪ B.

RS Aggarwal - Mathematics

For any sets A, B and C prove that:

A × (B – C) = (A × B) – (A × C)

RS Aggarwal - Mathematics