# Two godowns A and

let x and y quintal of grain supplied by A to shop d and E respectively. Then 100 - x - y will be supplied to shop F. Obviously x ≥ 0, y ≥ 0.

Since requirement at shop D is 60 quintal but supplied x quintal hence, 60 - x is sent form B to D.

Similarly requirement at shop E is 50 quintal but supplied y quintal hence, 50 - y is sent form B to E.

Similarly requirement at shop E is 40 quintal but supplied 100 - x - y quintal hence, 40 - (100 - x - y) i.e. x + y - 60 is sent form B to E.

Diagrammatically it can be explained as:

As x ≥ 0, y ≥ 0 and 100 - x - y ≥ 0 x + y ≤ 100

60 - x ≥ 0, 50 - y ≥ 0 and x + y - 60 ≥ 0

x ≤ 60, y ≤ 50 and x + y ≥ 60

Total transportation cost Z can be calculated as:

Z = 6x + 3y + 2.5(100 - x - y) + 4(60 - x) + 2(50 - y) + 3(x + y - 60)

= 6x + 3y + 250 - 2.5x - 2.5y + 240 - 4x + 100 - 2y + 3x + 3y - 180

Z = 2.5x + 1.5y + 410

Mathematical formulation of given problem is as follows:

Minimize Z = 2.5x + 1.5y + 410 ….(1)

Subject to the constraints,

x + y ≤ 100 …..(2)

x ≤ 60 …..(3)

y ≤ 50 ….(4)

x + y ≥ 60 …(5)

x ≥ 0, y ≥ 0 ….(6)

Now let us graph the feasible region of the system of inequalities (2) to (6). The feasible region (shaded) is shown in the fig. Here, we can observe that the feasible region is bounded.

The coordinates of the corner points A(60,0),B(60,40),C(50,50) and D(10,50).

Now, we find the minimum value of Z. According to table the minimum value of Z = 510 at point D (10,50).

Hence, the amount of grain delivered from A to D, E and F is 10 quintal, 50 quintals and 40 quintals respectively and from B to D,E and F is 50 quintal, 0 quintal and 0 quintal respectively.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses
RELATED QUESTIONS :

A manufacturer prMathematics - Board Papers

A retired person Mathematics - Board Papers

A manufacturing cMathematics - Board Papers