Answer :
Consider a parallel plate capacitor connected across a d.c. voltage supply as shown in the figure. When the circuit is closed, the electric current will flow through it. As the charges reaches to the plate, the insulating gap does not allow the charges to move further; hence, positive charges get deposited on one side of the plate and negative charges get deposited on the other side of the plate. When the voltage starts to develop, the electric charge begins to resist the deposition of further charge. Thus, the current flowing through the circuit gradually becomes less and then zero till the voltage of the capacitor is exactly equal but opposite to the voltage of the battery. This is how the capacitor gets charged when it is connected across a d.c. battery.
(a) The electric field between the plates is
The distance between plates is doubled, d' = 2d
Therefore, when the distance between the plates is double, the electric field will reduce
to one half.
(b) As the capacitance of the capacitor,
Energy stored in the capacitor is
Therefore, when the distance between the plates is doubled, the capacitance reduces to half. Therefore, energy stored in the capacitor becomes double.
Rate this question :


A capacitor is ma
Physics - ExemplarA parallel plate
Physics - ExemplarThe battery remai
Physics - ExemplarA parallel-plate
HC Verma - Concepts of Physics Part 2How many time con
HC Verma - Concepts of Physics Part 2The plates of a c
HC Verma - Concepts of Physics Part 2A capacitor of ca
HC Verma - Concepts of Physics Part 2