# Show that function ƒ(x) = is continuous.

We know that sin x is continuous everywhere

Consider the point x = 0

Left hand limit:

= 1

Right hand limit:

= 1

Also we have,

f(0) = 2

As,

f(0)

Therefore, f(x) is discontinuous at x = 0.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Super 10 Question: Check Your Knowledge of Maxima & Minima (Quiz)45 mins
Maxima & Minima in an interval60 mins
Questions Based on Maxima & Minima57 mins
Connection B/w Continuity & Differentiability59 mins
Check your Knowlege of Maxima & Minima ( Challenging Quiz)60 mins
Questions based on Maxima & Minima in an interval59 mins
Problems Based on L-Hospital Rule (Quiz)0 mins
When does a Maxima or Minima occur?48 mins
Differentiability by using first principleFREE Class
Interactive Quiz on LimitsFREE Class
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
view all courses