Q. 64.2( 28 Votes )
In each of the question, show that the given differential equation is homogeneous and solve each of them.

Answer :
Here, putting x = kx and y = ky
= k0.f(x,y)
Therefore, the given differential equation is homogeneous.
To solve it we make the substitution.
y = vx
Differentiating eq. with respect to x, we get
Integrating both sides, we get
The required solution of the differential equation.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Interactive Quiz on DIfferential Calculus50 mins
Interactive Quiz on Differential Calculus | Check Yourself56 mins
Functional Equations - JEE with ease48 mins






Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Solve the following differential equation:
tan-1x + tan-1 y = c is the general solution of the differential equation:
Mathematics - ExemplarThe number of solutions of when y(1) = 2 is:
Find the particular solution of the differential equation
given that
when
Solve the following differential equation:
dy + (x + 1)(y + 1) dx = 0
RD Sharma - Volume 2Find the particular solution of the following differential equation:
when x = 1