Q. 10 4.0( 23 Votes )

In each of the question, show that the given differential equation is homogeneous and solve each of them.


Answer :





Here, putting x = kx and y = ky




= k0f(x,y)


Therefore, the given differential equation is homogeneous.





To solve it we make the substitution.


x = vy


Differentiation eq. with respect to x, we get






Integrating both sides, we get




Put ev + v = t


(ev + 1)dv = dt





logt


log(ev + v)


log(ev + v) = - logy + logC ( From (i) eq.)





Multiply by y on both side, we get


yex/y + x = C


x + yex/y = C


The required solution of the differential equation.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.