Answer :



Here, putting x = kx and y = ky




= k0.f(x,y)


Therefore, the given differential equation is homogeneous.


(x2 + xy)dy = (x2 + y2)dx



To solve it we make the substitution.


y = vx


Differentiating eq. with respect to x, we get









Integrating on both side,




- v - 2log|1 - v| = log|x| + logc










The required solution of the differential equation.


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Solve the followiRD Sharma - Volume 2

tan-1xMathematics - Exemplar

The number of solMathematics - Exemplar

Find the particulMathematics - Board Papers

Solve the followiRD Sharma - Volume 2

Find the particulMathematics - Board Papers