Q. 14.3( 192 Votes )

# Use a suitable identity to get each of the following products.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

Answer :

**(i)** Using Identity (a + b)^{2} = a^{2} + 2ab + b^{2}

In the given expression a = x, b = 3

On substituting these values in the above identity, we get

**(ii)** Using Identity (a + b)^{2} = a^{2} + 2ab + b^{2}

In the given expression a = 2y, b = 5

On substituting these values in the above identity, we get

**(iii)** Using Identity (a - b) ^{2} = a^{2} - 2ab + b^{2}

In the given expression a = 2a, b = 7

On substituting these values in the above identity, we get

**(iv)** Using Identity (a - b)^{2} = a^{2} - 2ab + b^{2}

In the given expression a = 3a, b = 1/2

On substituting these values in the above identity, we get

**(v) **Using Identity (a + b)(a - b) = a^{2} - b^{2}

In the given expression a = 1.1m, b = 0.4

On substituting these values in the above identity, we get

**(vi) **Using Identity (a + b)(a - b) = a^{2} - b^{2}

In the given expression a = b^{2}, b = a^{2}

On substituting these values in the above identity, we get

**(vii) **Using Identity (a + b)(a - b) = a^{2} - b^{2}

In the given expression a = 6x, b = 7

On substituting these values in the above identity, we get

**(viii)**Using Identity (a - b) ^{2} = a^{2} - 2ab + b^{2}

On substituting these values in the above identity, we get

**(ix)** Using Identity (a + b) ^{2} = a^{2} + 2ab + b^{2}

In the given expression a =

On substituting these values in the above identity, we get

**(x)** Using Identity (a - b) ^{2} = a^{2} - 2ab + b^{2}

In the given expression a =

On substituting these values in the above identity, we get

Rate this question :

State whether the statements are true (T) or false (F).

If = 15, then x = .

NCERT - Mathematics ExemplarSimplify

(3x + 2y)^{2} - (3x – 2y)^{2}

Divide:

RD Sharma - Mathematics

Fill in the blanks to make the statements true:

103^{2} – 102^{2} = ………….. × (103 – 102) = ……… .

What must be added to so that the resulting polymonial is exactly divible by

RD Sharma - Mathematics