# Let s denotes the Given : A triangle ABC with BC = a , CA = b and AB = c . Also, a circle is inscribed which touches the sides BC, CA and AB at D, E and F respectively and s is semi- perimeter of the triangle

To Prove : BD = s - b

Proof :

Given that

Semi Perimeter = s

Perimeter = 2s

Implies that

2s = AB + BC + AC 

As we know,

Tangents drawn from an external point to a circle are equal

So we have

AF = AE  [Tangents from point A]

BF = BD  [Tangents From point B]

CD = CE  [Tangents From point C]

AF + BF + CD = AE + BD + CE

AB + CD = AC + BD

AB + CD + BD = AC + BD + BD

AB + BC - AC = 2BD

AB + BC + AC - AC - AC = 2BD

2s - 2AC = 2BD [From 1]

2BD = 2s - 2b [as AC = b]

BD = s - b

Hence Proved !

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation view all courses 