Answer :
Let QR be a chord in a circle with center O and ∠1 and ∠2 are the angles made by tangent at point R and Q with chord respectively.
To Prove : ∠1 = ∠2
Let P be another point on the circle, then, join PQ and PR.
Since, at point Q, there is a tangent.
∠RPQ = ∠2 [angles in alternate segments are equal] [Eqn 1]
Since, at point R, there is a tangent.
∠RPQ = ∠1 [angles in alternate segments are equal] [Eqn 2]
From Eqn 1 and Eqn 2
∠1 = ∠2
Hence Proved .
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation

