Answer :

(i) DAC + BAC = 180o (Linear pair)

120o + BAC = 180o


BAC = 180o – 120o


= 60o


And,


ACD + ACB = 180o


112o + ACB = 180o


ACB = 68o


In ABC,


BAC + ACB + ABC = 180o


60o + 68o + x = 180o


128o + x = 180o


x = 180o – 128o


= 52o


(ii) ABE + ABC = 180o (Linear pair)


120o + ABC = 180o


ABC = 60o


ACD + ACB = 180o (Linear pair)


110o + ACB = 180o


ACB = 70o


In


A + ACB + ABC = 180o


x + 70o + 60o = 180o


x + 130o = 180o


x = 50o


(iii) AB CD and AD cuts them so,


BAE = EDC (Alternate angles)


EDC = 52o


In


EDC + ECD + CEO = 180o


52o + 40o + x = 180o


92o + x = 180o


x = 180o – 92o


= 88o


(iv) Join AC


In


A + B + C = 180o


(35o + 1) + 45o + (50o + 2) = 180o


130o + 1 + 2 = 180o


1 + 2 = 50o


In


1 + 2 + D = 180o


50o + x = 180o


x = 180o – 50o


= 130o


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Prove that the anRS Aggarwal & V Aggarwal - Mathematics

If the sides of aRD Sharma - Mathematics

D is any point onNCERT Mathematics Exemplar

In a triangle RD Sharma - Mathematics

In Δ ABCRD Sharma - Mathematics

In Δ PQRRD Sharma - Mathematics

<span lang="EN-USRS Aggarwal & V Aggarwal - Mathematics

Prove that the peRD Sharma - Mathematics

In Fig. 10.25, <iRD Sharma - Mathematics

In a <span lang="RD Sharma - Mathematics