Answer :


Proof:


Take LHS:



Identities used:


cos 2x = cos2 x – sin2 x



sin 2x = 2 sin x cos x



Therefore,




{ a2 – b2 = (a - b)(a + b) & sin2 x + cos2 x = 1}



{ a2 + b2 + 2ab = (a + b)2}





Multiplying numerator and denominator by







{ sin (A – B) = sin A cos B – sin B cos A


cos (A – B) = cos A cos B + sin A sin B}




= RHS


Hence Proved


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Trigonometric Functions - 01Trigonometric Functions - 01Trigonometric Functions - 0152 mins
Conditional IdentitiesConditional IdentitiesConditional Identities31 mins
Trigonometric Functions - 05Trigonometric Functions - 05Trigonometric Functions - 0568 mins
Trigonometric Functions - 03Trigonometric Functions - 03Trigonometric Functions - 0366 mins
Trigonometric Functions - 06Trigonometric Functions - 06Trigonometric Functions - 0658 mins
Trigonometric SeriesTrigonometric SeriesTrigonometric Series45 mins
Interactive Quiz on trigonometric ratios & identitiesInteractive Quiz on trigonometric ratios & identitiesInteractive Quiz on trigonometric ratios & identities73 mins
Trigonometric Functions - 02Trigonometric Functions - 02Trigonometric Functions - 0268 mins
Trigonometric Functions - 04Trigonometric Functions - 04Trigonometric Functions - 0466 mins
Trigonometric Functions - 08Trigonometric Functions - 08Trigonometric Functions - 0865 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses