Answer :


Proof:


Take LHS:



Identities used:


cos 2x = 1 – 2 sin2 x


2 sin2 x = 1 – cos 2x



Therefore,






{ cos (π – θ) = - cos θ,


cos (π + θ) = - cos θ &


cos(2π – θ) = cos θ}





= 2


= RHS


Hence Proved


Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Related Videos
Trigonometric Functions - 01Trigonometric Functions - 01Trigonometric Functions - 0152 mins
Conditional IdentitiesConditional IdentitiesConditional Identities31 mins
Trigonometric Functions - 05Trigonometric Functions - 05Trigonometric Functions - 0568 mins
Trigonometric Functions - 03Trigonometric Functions - 03Trigonometric Functions - 0366 mins
Trigonometric Functions - 06Trigonometric Functions - 06Trigonometric Functions - 0658 mins
Trigonometric SeriesTrigonometric SeriesTrigonometric Series45 mins
Interactive Quiz on trigonometric ratios & identitiesInteractive Quiz on trigonometric ratios & identitiesInteractive Quiz on trigonometric ratios & identities73 mins
Trigonometric Functions - 02Trigonometric Functions - 02Trigonometric Functions - 0268 mins
Trigonometric Functions - 04Trigonometric Functions - 04Trigonometric Functions - 0466 mins
Trigonometric Functions - 08Trigonometric Functions - 08Trigonometric Functions - 0865 mins
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses