Register
Register

Q. 1025.0( 2 Votes )

# ABCD is a paralle

Given, area of ∆AED = 6 cm2

× DE × AE = 6

× 4 × AE = 6

AE = 3 cm

In ∆AEC, AE = 3 cm, AC = 5 cm

Applying Pythagoras theorem in ∆AEC,

(AE)2 + (EC)2 = (AC)2

(3)2 + (EC)2 = (5)2

(EC)2 = 25 - 9 = 16

EC =√16 = 4 cm

DC = DE + EC = 4 + 4 = 8 cm

Area of ∆ADC = × DC × AE = × 8 × 3 = 12 cm2

Since the diagonal divides the parallelogram into two congruent triangles,

Area of parallelogram ABCD = 2 × Area of ∆ADC = 2 × 12 = 24 cm2

Applying Pythagoras theorem in ∆AED,

(AE)2 + (DE)2 = (AD)2

(3)2 + (4)2 = (AD)2

(AD)2 = 9 + 16 = 25

AD =√25 = 5 cm

Perimeter of parallelogram ABCD = 2 (l + b) = 2(DC + AD) = 2(8 + 5) = 26 cm

Area of parallelogram ABCD = 24 cm2

Perimeter of parallelogram ABCD = 26 cm

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
RELATED QUESTIONS :

<span lang="EN-USNCERT Mathematics

<span lang="EN-USNCERT Mathematics

<span lang="EN-USNCERT Mathematics

<span lang="EN-USNCERT Mathematics

Perimeter of a paNCERT - Exemplar Mathematics

In Fig. 9.35, finNCERT - Exemplar Mathematics

Altitudes MN and NCERT - Exemplar Mathematics

State whether theNCERT - Exemplar Mathematics

State whether theNCERT - Exemplar Mathematics

Fill in the blankNCERT - Exemplar Mathematics