Q. 124.6( 16 Votes )
If (cos θ + sin θ
Answer :
Given: cos θ + sin θ = √2sin θ
Consider (sin θ + cos θ)2 + (sin θ – cos θ)2 = sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ –
2 sin θ cos θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2sin2 θ + 2 cos2 θ
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2(sin2 θ + cos2 θ)
⇒ (sin θ + cos θ)2 + (sin θ – cos θ)2 = 2
⇒ (√2sin θ)2 + (sin θ – cos θ)2 = 2
⇒ (sin θ – cos θ)2 = 2 – 2sin2 θ
⇒ (sin θ – cos θ)2 = 2(1 – sin2 θ)
⇒ (sin θ – cos θ)2 = 2(cos2 θ)
⇒ (sin θ – cos θ) = ± √2 cos θ
Hence, proved.
Rate this question :
How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
view all courses
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation


RELATED QUESTIONS :
Prove the followi
KC Sinha - MathematicsProve the followi
KC Sinha - MathematicsProve the followi
KC Sinha - MathematicsIf sin 77° = x, t
KC Sinha - MathematicsIf cos55° = x<sup
KC Sinha - MathematicsIf cos40o</s
KC Sinha - Mathematics