Q. 94.2( 84 Votes )

# Find the area of

Answer :

It is given that the area of the region bounded by the parabola y = x^{2} and y = |x|.

Now, we can observed that the given area is symmetrical about y-axis.

⇒ Area OACO = Area ODBO

And the point of intersection of parabola, y = x^{2} and y = x is A (1, 1).

Thus, Area OACO = Area ΔOAM – Area OMACO

Now, Area of ΔOAM =

Area of OMACO =

⇒ Area OACO = Area ΔOAM – Area OMACO

=

Therefore, the required area is = 2(1/6) = 1/3 Answer.

Rate this question :

How useful is this solution?

We strive to provide quality solutions. Please rate us to serve you better.

Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Expertsview all courses

Dedicated counsellor for each student

24X7 Doubt Resolution

Daily Report Card

Detailed Performance Evaluation

RELATED QUESTIONS :

Find the area of Mathematics - Board Papers

Sketch the graph Mathematics - Board Papers

Using integrationMathematics - Board Papers

Find the area of Mathematics - Board Papers