Answer :

It is given that the area of the region bounded by the parabola y = x2 and y = |x|.


Now, we can observed that the given area is symmetrical about y-axis.


Area OACO = Area ODBO


And the point of intersection of parabola, y = x2 and y = x is A (1, 1).


Thus, Area OACO = Area ΔOAM – Area OMACO


Now, Area of ΔOAM =


Area of OMACO =



Area OACO = Area ΔOAM – Area OMACO


=


Therefore, the required area is = 2(1/6) = 1/3 Answer.

Rate this question :

How useful is this solution?
We strive to provide quality solutions. Please rate us to serve you better.
Try our Mini CourseMaster Important Topics in 7 DaysLearn from IITians, NITians, Doctors & Academic Experts
Dedicated counsellor for each student
24X7 Doubt Resolution
Daily Report Card
Detailed Performance Evaluation
caricature
view all courses
RELATED QUESTIONS :

Find the area of Mathematics - Board Papers

Sketch the graph Mathematics - Board Papers

Using integrationMathematics - Board Papers

Find the area of Mathematics - Board Papers