Q. 14.4( 102 Votes )

# Find the area of the region bounded by the curve y^{2} = x and the lines x = 1, x = 4 and the x-axis in the first quadrant.

Answer :

We can see from the figure that the area of the region bounded by the curve y^{2} = x and the lines x = 1, x = 4 is shown by shaded region that is Area ABCD.

Area of ABCD =

Rate this question :

Find the area of the circle 4x^{2} + 4y^{2} = 9 which is interior to the parabola x^{2} = 4y.

**OR**

Using integration, find the area of the triangle ABC, coordinates of whose vertices are A(4, 1), B(6, 6) and C(8, 4).

Mathematics - Board PapersSketch the graph of y =|x + 3| and evaluate the area under the curve

y =|x + 3| above x-axis and between

x = – 6 to x = 0

Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4).

Mathematics - Board PapersFind the area of the region included between the parabola y^{2} = x and the line

x + y = 2.